本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-12cos(x) + 2{(36{(cos(x))}^{2} + 325)}^{(\frac{-1}{2})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -12cos(x) + \frac{2}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -12cos(x) + \frac{2}{(36cos^{2}(x) + 325)^{\frac{1}{2}}}\right)}{dx}\\=&-12*-sin(x) + 2(\frac{\frac{-1}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}})\\=&12sin(x) + \frac{72sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 12sin(x) + \frac{72sin(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}}\right)}{dx}\\=&12cos(x) + 72(\frac{\frac{-3}{2}(36*-2cos(x)sin(x) + 0)}{(36cos^{2}(x) + 325)^{\frac{5}{2}}})sin(x)cos(x) + \frac{72cos(x)cos(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} + \frac{72sin(x)*-sin(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}}\\=&12cos(x) + \frac{7776sin^{2}(x)cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{5}{2}}} + \frac{72cos^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}} - \frac{72sin^{2}(x)}{(36cos^{2}(x) + 325)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!