本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2x - lg(x) + \frac{1}{lg(x)ln(x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2x - lg(x) + \frac{1}{ln(x)lg(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2x - lg(x) + \frac{1}{ln(x)lg(x)}\right)}{dx}\\=&2 - \frac{1}{ln{10}(x)} + \frac{-1}{ln^{2}(x)(x)lg(x)} + \frac{-1}{ln(x)lg^{2}(x)ln{10}(x)}\\=& - \frac{1}{xln^{2}(x)lg(x)} - \frac{1}{xln{10}ln(x)lg^{2}(x)} - \frac{1}{xln{10}} + 2\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{1}{xln^{2}(x)lg(x)} - \frac{1}{xln{10}ln(x)lg^{2}(x)} - \frac{1}{xln{10}} + 2\right)}{dx}\\=& - \frac{-1}{x^{2}ln^{2}(x)lg(x)} - \frac{-2}{xln^{3}(x)(x)lg(x)} - \frac{-1}{xln^{2}(x)lg^{2}(x)ln{10}(x)} - \frac{-1}{x^{2}ln{10}ln(x)lg^{2}(x)} - \frac{-0}{xln^{2}{10}ln(x)lg^{2}(x)} - \frac{-1}{xln{10}ln^{2}(x)(x)lg^{2}(x)} - \frac{-2}{xln{10}ln(x)lg^{3}(x)ln{10}(x)} - \frac{-1}{x^{2}ln{10}} - \frac{-0}{xln^{2}{10}} + 0\\=&\frac{1}{x^{2}ln^{2}(x)lg(x)} + \frac{2}{x^{2}ln^{3}(x)lg(x)} + \frac{1}{x^{2}ln{10}ln^{2}(x)lg^{2}(x)} + \frac{1}{x^{2}ln{10}ln(x)lg^{2}(x)} + \frac{1}{x^{2}ln^{2}(x)ln{10}lg^{2}(x)} + \frac{2}{x^{2}ln(x)ln^{2}{10}lg^{3}(x)} + \frac{1}{x^{2}ln{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!