本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{ln(x + 1)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{ln(x + 1)}\right)}{dx}\\=&\frac{1}{ln(x + 1)} + \frac{x*-(1 + 0)}{ln^{2}(x + 1)(x + 1)}\\=&\frac{1}{ln(x + 1)} - \frac{x}{(x + 1)ln^{2}(x + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{ln(x + 1)} - \frac{x}{(x + 1)ln^{2}(x + 1)}\right)}{dx}\\=&\frac{-(1 + 0)}{ln^{2}(x + 1)(x + 1)} - \frac{(\frac{-(1 + 0)}{(x + 1)^{2}})x}{ln^{2}(x + 1)} - \frac{1}{(x + 1)ln^{2}(x + 1)} - \frac{x*-2(1 + 0)}{(x + 1)ln^{3}(x + 1)(x + 1)}\\=&\frac{-2}{(x + 1)ln^{2}(x + 1)} + \frac{x}{(x + 1)^{2}ln^{2}(x + 1)} + \frac{2x}{(x + 1)^{2}ln^{3}(x + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2}{(x + 1)ln^{2}(x + 1)} + \frac{x}{(x + 1)^{2}ln^{2}(x + 1)} + \frac{2x}{(x + 1)^{2}ln^{3}(x + 1)}\right)}{dx}\\=&\frac{-2(\frac{-(1 + 0)}{(x + 1)^{2}})}{ln^{2}(x + 1)} - \frac{2*-2(1 + 0)}{(x + 1)ln^{3}(x + 1)(x + 1)} + \frac{(\frac{-2(1 + 0)}{(x + 1)^{3}})x}{ln^{2}(x + 1)} + \frac{1}{(x + 1)^{2}ln^{2}(x + 1)} + \frac{x*-2(1 + 0)}{(x + 1)^{2}ln^{3}(x + 1)(x + 1)} + \frac{2(\frac{-2(1 + 0)}{(x + 1)^{3}})x}{ln^{3}(x + 1)} + \frac{2}{(x + 1)^{2}ln^{3}(x + 1)} + \frac{2x*-3(1 + 0)}{(x + 1)^{2}ln^{4}(x + 1)(x + 1)}\\=&\frac{3}{(x + 1)^{2}ln^{2}(x + 1)} + \frac{6}{(x + 1)^{2}ln^{3}(x + 1)} - \frac{2x}{(x + 1)^{3}ln^{2}(x + 1)} - \frac{6x}{(x + 1)^{3}ln^{3}(x + 1)} - \frac{6x}{(x + 1)^{3}ln^{4}(x + 1)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3}{(x + 1)^{2}ln^{2}(x + 1)} + \frac{6}{(x + 1)^{2}ln^{3}(x + 1)} - \frac{2x}{(x + 1)^{3}ln^{2}(x + 1)} - \frac{6x}{(x + 1)^{3}ln^{3}(x + 1)} - \frac{6x}{(x + 1)^{3}ln^{4}(x + 1)}\right)}{dx}\\=&\frac{3(\frac{-2(1 + 0)}{(x + 1)^{3}})}{ln^{2}(x + 1)} + \frac{3*-2(1 + 0)}{(x + 1)^{2}ln^{3}(x + 1)(x + 1)} + \frac{6(\frac{-2(1 + 0)}{(x + 1)^{3}})}{ln^{3}(x + 1)} + \frac{6*-3(1 + 0)}{(x + 1)^{2}ln^{4}(x + 1)(x + 1)} - \frac{2(\frac{-3(1 + 0)}{(x + 1)^{4}})x}{ln^{2}(x + 1)} - \frac{2}{(x + 1)^{3}ln^{2}(x + 1)} - \frac{2x*-2(1 + 0)}{(x + 1)^{3}ln^{3}(x + 1)(x + 1)} - \frac{6(\frac{-3(1 + 0)}{(x + 1)^{4}})x}{ln^{3}(x + 1)} - \frac{6}{(x + 1)^{3}ln^{3}(x + 1)} - \frac{6x*-3(1 + 0)}{(x + 1)^{3}ln^{4}(x + 1)(x + 1)} - \frac{6(\frac{-3(1 + 0)}{(x + 1)^{4}})x}{ln^{4}(x + 1)} - \frac{6}{(x + 1)^{3}ln^{4}(x + 1)} - \frac{6x*-4(1 + 0)}{(x + 1)^{3}ln^{5}(x + 1)(x + 1)}\\=&\frac{-8}{(x + 1)^{3}ln^{2}(x + 1)} - \frac{24}{(x + 1)^{3}ln^{3}(x + 1)} - \frac{24}{(x + 1)^{3}ln^{4}(x + 1)} + \frac{6x}{(x + 1)^{4}ln^{2}(x + 1)} + \frac{22x}{(x + 1)^{4}ln^{3}(x + 1)} + \frac{36x}{(x + 1)^{4}ln^{4}(x + 1)} + \frac{24x}{(x + 1)^{4}ln^{5}(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!