本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(ln(x) + ln(x + 1))}{(x(x + 1))} + ln({x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(x)}{(x^{2} + x)} + \frac{ln(x + 1)}{(x^{2} + x)} + ln(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(x)}{(x^{2} + x)} + \frac{ln(x + 1)}{(x^{2} + x)} + ln(x^{2})\right)}{dx}\\=&(\frac{-(2x + 1)}{(x^{2} + x)^{2}})ln(x) + \frac{1}{(x^{2} + x)(x)} + (\frac{-(2x + 1)}{(x^{2} + x)^{2}})ln(x + 1) + \frac{(1 + 0)}{(x^{2} + x)(x + 1)} + \frac{2x}{(x^{2})}\\=&\frac{-2xln(x)}{(x^{2} + x)^{2}} - \frac{ln(x)}{(x^{2} + x)^{2}} - \frac{2xln(x + 1)}{(x^{2} + x)^{2}} + \frac{1}{(x^{2} + x)x} - \frac{ln(x + 1)}{(x^{2} + x)^{2}} + \frac{1}{(x + 1)(x^{2} + x)} + \frac{2}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!