本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{1}{5}{x}^{5} - 4sin(\frac{1}{2}x)(cos(\frac{1}{2})x)log_{5}^{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - 4xlog_{5}^{x}sin(\frac{1}{2}x)cos(\frac{1}{2}) + \frac{1}{5}x^{5}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - 4xlog_{5}^{x}sin(\frac{1}{2}x)cos(\frac{1}{2}) + \frac{1}{5}x^{5}\right)}{dx}\\=& - 4log_{5}^{x}sin(\frac{1}{2}x)cos(\frac{1}{2}) - 4x(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))})sin(\frac{1}{2}x)cos(\frac{1}{2}) - 4xlog_{5}^{x}cos(\frac{1}{2}x)*\frac{1}{2}cos(\frac{1}{2}) - 4xlog_{5}^{x}sin(\frac{1}{2}x)*-sin(\frac{1}{2})*0 + \frac{1}{5}*5x^{4}\\=& - 4log_{5}^{x}sin(\frac{1}{2}x)cos(\frac{1}{2}) - \frac{4sin(\frac{1}{2}x)cos(\frac{1}{2})}{ln(5)} - 2xlog_{5}^{x}cos(\frac{1}{2}x)cos(\frac{1}{2}) + x^{4}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!