本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(-{\frac{1}{(x - 1)}}^{2})(ln(x) - \frac{2(x - 1)}{(x + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-ln(x)}{(x - 1)^{2}} + \frac{2x}{(x - 1)^{2}(x + 1)} - \frac{2}{(x - 1)^{2}(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-ln(x)}{(x - 1)^{2}} + \frac{2x}{(x - 1)^{2}(x + 1)} - \frac{2}{(x - 1)^{2}(x + 1)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x - 1)^{3}})ln(x) - \frac{1}{(x - 1)^{2}(x)} + \frac{2(\frac{-2(1 + 0)}{(x - 1)^{3}})x}{(x + 1)} + \frac{2(\frac{-(1 + 0)}{(x + 1)^{2}})x}{(x - 1)^{2}} + \frac{2}{(x - 1)^{2}(x + 1)} - \frac{2(\frac{-2(1 + 0)}{(x - 1)^{3}})}{(x + 1)} - \frac{2(\frac{-(1 + 0)}{(x + 1)^{2}})}{(x - 1)^{2}}\\=&\frac{2ln(x)}{(x - 1)^{3}} - \frac{1}{(x - 1)^{2}x} - \frac{4x}{(x - 1)^{3}(x + 1)} - \frac{2x}{(x + 1)^{2}(x - 1)^{2}} + \frac{4}{(x - 1)^{3}(x + 1)} + \frac{2}{(x + 1)^{2}(x - 1)^{2}} + \frac{2}{(x - 1)^{2}(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!