本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(\frac{x}{sin(x)})}^{sqrt(x)}}{1} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x}{sin(x)})^{sqrt(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x}{sin(x)})^{sqrt(x)}\right)}{dx}\\=&((\frac{x}{sin(x)})^{sqrt(x)}((\frac{\frac{1}{2}}{(x)^{\frac{1}{2}}})ln(\frac{x}{sin(x)}) + \frac{(sqrt(x))(\frac{1}{sin(x)} + \frac{x*-cos(x)}{sin^{2}(x)})}{(\frac{x}{sin(x)})}))\\=&\frac{(\frac{x}{sin(x)})^{sqrt(x)}ln(\frac{x}{sin(x)})}{2x^{\frac{1}{2}}} + \frac{(\frac{x}{sin(x)})^{sqrt(x)}sqrt(x)}{x} - \frac{(\frac{x}{sin(x)})^{sqrt(x)}cos(x)sqrt(x)}{sin(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!