本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{\frac{x}{4}}(24cos(1.984)x - 3.024sin(1.984)x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 24xe^{0.25x}cos(1.984) - 3.024xe^{0.25x}sin(1.984)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 24xe^{0.25x}cos(1.984) - 3.024xe^{0.25x}sin(1.984)\right)}{dx}\\=&24e^{0.25x}cos(1.984) + 24xe^{0.25x}*0.25cos(1.984) + 24xe^{0.25x}*-sin(1.984)*0 - 3.024e^{0.25x}sin(1.984) - 3.024xe^{0.25x}*0.25sin(1.984) - 3.024xe^{0.25x}cos(1.984)*0\\=&24e^{0.25x}cos(1.984) + 6xe^{0.25x}cos(1.984) - 3.024e^{0.25x}sin(1.984) - 0.756xe^{0.25x}sin(1.984)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!