本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x(ln(x) - 1) + {e}^{(x - 1)})}{(x(x - 1))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xln(x)}{(x^{2} - x)} - \frac{x}{(x^{2} - x)} + \frac{{e}^{(x - 1)}}{(x^{2} - x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xln(x)}{(x^{2} - x)} - \frac{x}{(x^{2} - x)} + \frac{{e}^{(x - 1)}}{(x^{2} - x)}\right)}{dx}\\=&(\frac{-(2x - 1)}{(x^{2} - x)^{2}})xln(x) + \frac{ln(x)}{(x^{2} - x)} + \frac{x}{(x^{2} - x)(x)} - (\frac{-(2x - 1)}{(x^{2} - x)^{2}})x - \frac{1}{(x^{2} - x)} + (\frac{-(2x - 1)}{(x^{2} - x)^{2}}){e}^{(x - 1)} + \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{(x^{2} - x)}\\=&\frac{-2x^{2}ln(x)}{(x^{2} - x)^{2}} + \frac{xln(x)}{(x^{2} - x)^{2}} + \frac{ln(x)}{(x^{2} - x)} - \frac{2x{e}^{(x - 1)}}{(x^{2} - x)^{2}} + \frac{2x^{2}}{(x^{2} - x)^{2}} + \frac{{e}^{(x - 1)}}{(x^{2} - x)} - \frac{x}{(x^{2} - x)^{2}} + \frac{{e}^{(x - 1)}}{(x^{2} - x)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!