数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数((1 - {x}^{100}){(1 - sqrt(abs + (x)))}^{2}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -x^{100}sqrt(abs + x)^{2} + 2x^{100}sqrt(abs + x) - x^{100} + sqrt(abs + x)^{2} - 2sqrt(abs + x) + 1\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -x^{100}sqrt(abs + x)^{2} + 2x^{100}sqrt(abs + x) - x^{100} + sqrt(abs + x)^{2} - 2sqrt(abs + x) + 1\right)}{dx}\\=&-100x^{99}sqrt(abs + x)^{2} - \frac{x^{100}*2(abs + x)^{\frac{1}{2}}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} + 2*100x^{99}sqrt(abs + x) + \frac{2x^{100}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} - 100x^{99} + \frac{2(abs + x)^{\frac{1}{2}}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} - \frac{2(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} + 0\\=&-100x^{99}sqrt(abs + x)^{2} + 200x^{99}sqrt(abs + x) - x^{100} + \frac{x^{100}}{(abs + x)^{\frac{1}{2}}} - 100x^{99} - \frac{1}{(abs + x)^{\frac{1}{2}}} + 1\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -100x^{99}sqrt(abs + x)^{2} + 200x^{99}sqrt(abs + x) - x^{100} + \frac{x^{100}}{(abs + x)^{\frac{1}{2}}} - 100x^{99} - \frac{1}{(abs + x)^{\frac{1}{2}}} + 1\right)}{dx}\\=&-100*99x^{98}sqrt(abs + x)^{2} - \frac{100x^{99}*2(abs + x)^{\frac{1}{2}}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} + 200*99x^{98}sqrt(abs + x) + \frac{200x^{99}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} - 100x^{99} + (\frac{\frac{-1}{2}(0 + 1)}{(abs + x)^{\frac{3}{2}}})x^{100} + \frac{100x^{99}}{(abs + x)^{\frac{1}{2}}} - 100*99x^{98} - (\frac{\frac{-1}{2}(0 + 1)}{(abs + x)^{\frac{3}{2}}}) + 0\\=&-9900x^{98}sqrt(abs + x)^{2} + 19800x^{98}sqrt(abs + x) - 200x^{99} + \frac{200x^{99}}{(abs + x)^{\frac{1}{2}}} - \frac{x^{100}}{2(abs + x)^{\frac{3}{2}}} - 9900x^{98} + \frac{1}{2(abs + x)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -9900x^{98}sqrt(abs + x)^{2} + 19800x^{98}sqrt(abs + x) - 200x^{99} + \frac{200x^{99}}{(abs + x)^{\frac{1}{2}}} - \frac{x^{100}}{2(abs + x)^{\frac{3}{2}}} - 9900x^{98} + \frac{1}{2(abs + x)^{\frac{3}{2}}}\right)}{dx}\\=&-9900*98x^{97}sqrt(abs + x)^{2} - \frac{9900x^{98}*2(abs + x)^{\frac{1}{2}}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} + 19800*98x^{97}sqrt(abs + x) + \frac{19800x^{98}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} - 200*99x^{98} + 200(\frac{\frac{-1}{2}(0 + 1)}{(abs + x)^{\frac{3}{2}}})x^{99} + \frac{200*99x^{98}}{(abs + x)^{\frac{1}{2}}} - \frac{(\frac{\frac{-3}{2}(0 + 1)}{(abs + x)^{\frac{5}{2}}})x^{100}}{2} - \frac{100x^{99}}{2(abs + x)^{\frac{3}{2}}} - 9900*98x^{97} + \frac{(\frac{\frac{-3}{2}(0 + 1)}{(abs + x)^{\frac{5}{2}}})}{2}\\=&-970200x^{97}sqrt(abs + x)^{2} + 1940400x^{97}sqrt(abs + x) - 29700x^{98} + \frac{29700x^{98}}{(abs + x)^{\frac{1}{2}}} - \frac{150x^{99}}{(abs + x)^{\frac{3}{2}}} + \frac{3x^{100}}{4(abs + x)^{\frac{5}{2}}} - 970200x^{97} - \frac{3}{4(abs + x)^{\frac{5}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -970200x^{97}sqrt(abs + x)^{2} + 1940400x^{97}sqrt(abs + x) - 29700x^{98} + \frac{29700x^{98}}{(abs + x)^{\frac{1}{2}}} - \frac{150x^{99}}{(abs + x)^{\frac{3}{2}}} + \frac{3x^{100}}{4(abs + x)^{\frac{5}{2}}} - 970200x^{97} - \frac{3}{4(abs + x)^{\frac{5}{2}}}\right)}{dx}\\=&-970200*97x^{96}sqrt(abs + x)^{2} - \frac{970200x^{97}*2(abs + x)^{\frac{1}{2}}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} + 1940400*97x^{96}sqrt(abs + x) + \frac{1940400x^{97}(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}} - 29700*98x^{97} + 29700(\frac{\frac{-1}{2}(0 + 1)}{(abs + x)^{\frac{3}{2}}})x^{98} + \frac{29700*98x^{97}}{(abs + x)^{\frac{1}{2}}} - 150(\frac{\frac{-3}{2}(0 + 1)}{(abs + x)^{\frac{5}{2}}})x^{99} - \frac{150*99x^{98}}{(abs + x)^{\frac{3}{2}}} + \frac{3(\frac{\frac{-5}{2}(0 + 1)}{(abs + x)^{\frac{7}{2}}})x^{100}}{4} + \frac{3*100x^{99}}{4(abs + x)^{\frac{5}{2}}} - 970200*97x^{96} - \frac{3(\frac{\frac{-5}{2}(0 + 1)}{(abs + x)^{\frac{7}{2}}})}{4}\\=&-94109400x^{96}sqrt(abs + x)^{2} + 188218800x^{96}sqrt(abs + x) - 3880800x^{97} + \frac{3880800x^{97}}{(abs + x)^{\frac{1}{2}}} - \frac{29700x^{98}}{(abs + x)^{\frac{3}{2}}} + \frac{300x^{99}}{(abs + x)^{\frac{5}{2}}} - \frac{15x^{100}}{8(abs + x)^{\frac{7}{2}}} - 94109400x^{96} + \frac{15}{8(abs + x)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。