本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - x){e}^{x}}{(1 + {x}^{2})} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x{e}^{x}}{(x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x{e}^{x}}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}}){e}^{x} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)} - (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x{e}^{x} - \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)}\\=&\frac{-2x{e}^{x}}{(x^{2} + 1)^{2}} + \frac{2x^{2}{e}^{x}}{(x^{2} + 1)^{2}} - \frac{x{e}^{x}}{(x^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2x{e}^{x}}{(x^{2} + 1)^{2}} + \frac{2x^{2}{e}^{x}}{(x^{2} + 1)^{2}} - \frac{x{e}^{x}}{(x^{2} + 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x{e}^{x} - \frac{2{e}^{x}}{(x^{2} + 1)^{2}} - \frac{2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{2}} + 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}{e}^{x} + \frac{2*2x{e}^{x}}{(x^{2} + 1)^{2}} + \frac{2x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{2}} - (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x{e}^{x} - \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)}\\=&\frac{8x^{2}{e}^{x}}{(x^{2} + 1)^{3}} - \frac{2{e}^{x}}{(x^{2} + 1)^{2}} + \frac{2x{e}^{x}}{(x^{2} + 1)^{2}} - \frac{8x^{3}{e}^{x}}{(x^{2} + 1)^{3}} + \frac{4x^{2}{e}^{x}}{(x^{2} + 1)^{2}} - \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x{e}^{x}}{(x^{2} + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{8x^{2}{e}^{x}}{(x^{2} + 1)^{3}} - \frac{2{e}^{x}}{(x^{2} + 1)^{2}} + \frac{2x{e}^{x}}{(x^{2} + 1)^{2}} - \frac{8x^{3}{e}^{x}}{(x^{2} + 1)^{3}} + \frac{4x^{2}{e}^{x}}{(x^{2} + 1)^{2}} - \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x{e}^{x}}{(x^{2} + 1)}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2}{e}^{x} + \frac{8*2x{e}^{x}}{(x^{2} + 1)^{3}} + \frac{8x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{3}} - 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}}){e}^{x} - \frac{2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{2}} + 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x{e}^{x} + \frac{2{e}^{x}}{(x^{2} + 1)^{2}} + \frac{2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{2}} - 8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{3}{e}^{x} - \frac{8*3x^{2}{e}^{x}}{(x^{2} + 1)^{3}} - \frac{8x^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{3}} + 4(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}{e}^{x} + \frac{4*2x{e}^{x}}{(x^{2} + 1)^{2}} + \frac{4x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)^{2}} - (\frac{-(2x + 0)}{(x^{2} + 1)^{2}}){e}^{x} - \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)} - (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x{e}^{x} - \frac{{e}^{x}}{(x^{2} + 1)} - \frac{x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + 1)}\\=&\frac{-48x^{3}{e}^{x}}{(x^{2} + 1)^{4}} + \frac{24x{e}^{x}}{(x^{2} + 1)^{3}} - \frac{24x^{2}{e}^{x}}{(x^{2} + 1)^{3}} + \frac{12x{e}^{x}}{(x^{2} + 1)^{2}} + \frac{48x^{4}{e}^{x}}{(x^{2} + 1)^{4}} - \frac{24x^{3}{e}^{x}}{(x^{2} + 1)^{3}} + \frac{6x^{2}{e}^{x}}{(x^{2} + 1)^{2}} - \frac{2{e}^{x}}{(x^{2} + 1)} - \frac{x{e}^{x}}{(x^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!