本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({x}^{2} + 2x + 2){e}^{(sin(x) - 1)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}{e}^{(sin(x) - 1)} + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2}{e}^{(sin(x) - 1)} + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\right)}{dx}\\=&2x{e}^{(sin(x) - 1)} + x^{2}({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)})) + 2{e}^{(sin(x) - 1)} + 2x({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)})) + 2({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))\\=&x^{2}{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)}cos(x) + 2{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( x^{2}{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)}cos(x) + 2{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)} + 2{e}^{(sin(x) - 1)}\right)}{dx}\\=&2x{e}^{(sin(x) - 1)}cos(x) + x^{2}({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))cos(x) + x^{2}{e}^{(sin(x) - 1)}*-sin(x) + 2{e}^{(sin(x) - 1)}cos(x) + 2x({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))cos(x) + 2x{e}^{(sin(x) - 1)}*-sin(x) + 2({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))cos(x) + 2{e}^{(sin(x) - 1)}*-sin(x) + 2{e}^{(sin(x) - 1)} + 2x({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)})) + 2({e}^{(sin(x) - 1)}((cos(x) + 0)ln(e) + \frac{(sin(x) - 1)(0)}{(e)}))\\=&4x{e}^{(sin(x) - 1)}cos(x) + x^{2}{e}^{(sin(x) - 1)}cos^{2}(x) - x^{2}{e}^{(sin(x) - 1)}sin(x) + 4{e}^{(sin(x) - 1)}cos(x) + 2x{e}^{(sin(x) - 1)}cos^{2}(x) - 2x{e}^{(sin(x) - 1)}sin(x) + 2{e}^{(sin(x) - 1)}cos^{2}(x) - 2{e}^{(sin(x) - 1)}sin(x) + 2{e}^{(sin(x) - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!