本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x(x - 4)}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\right)}{dx}\\=&\frac{(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x^{2}}{(0.12x + 0.35)(0.12x + 0.35)} + \frac{(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x^{2}}{(0.12x + 0.35)(0.12x + 0.35)} + \frac{(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x^{2}}{(0.12x + 0.35)(0.12x + 0.35)} + \frac{2x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x}{(0.12x + 0.35)(0.12x + 0.35)} - \frac{4(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x}{(0.12x + 0.35)(0.12x + 0.35)} - \frac{4(\frac{-(0.12 + 0)}{(0.12x + 0.35)^{2}})x}{(0.12x + 0.35)(0.12x + 0.35)} - \frac{4}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\\=&\frac{-0.12x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{0.12x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{0.12x^{2}}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{2x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{0.48x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{0.48x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} + \frac{0.48x}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)} - \frac{4}{(0.12x + 0.35)(0.12x + 0.35)(0.12x + 0.35)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!