本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x)cos(3)x 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xsin(x)cos(3)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xsin(x)cos(3)\right)}{dx}\\=&sin(x)cos(3) + xcos(x)cos(3) + xsin(x)*-sin(3)*0\\=&sin(x)cos(3) + xcos(x)cos(3)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( sin(x)cos(3) + xcos(x)cos(3)\right)}{dx}\\=&cos(x)cos(3) + sin(x)*-sin(3)*0 + cos(x)cos(3) + x*-sin(x)cos(3) + xcos(x)*-sin(3)*0\\=&2cos(x)cos(3) - xsin(x)cos(3)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!