本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arcsin(5{x}^{2} + 3{y}^{4}) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(5x^{2} + 3y^{4})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(5x^{2} + 3y^{4})\right)}{dx}\\=&(\frac{(5*2x + 0)}{((1 - (5x^{2} + 3y^{4})^{2})^{\frac{1}{2}})})\\=&\frac{10x}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{10x}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&10(\frac{\frac{-1}{2}(-25*4x^{3} - 30y^{4}*2x + 0 + 0)}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}})x + \frac{10}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{1}{2}}}\\=&\frac{500x^{4}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + \frac{300y^{4}x^{2}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + \frac{10}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{500x^{4}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + \frac{300y^{4}x^{2}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + \frac{10}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&500(\frac{\frac{-3}{2}(-25*4x^{3} - 30y^{4}*2x + 0 + 0)}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{5}{2}}})x^{4} + \frac{500*4x^{3}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + 300(\frac{\frac{-3}{2}(-25*4x^{3} - 30y^{4}*2x + 0 + 0)}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{5}{2}}})y^{4}x^{2} + \frac{300y^{4}*2x}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + 10(\frac{\frac{-1}{2}(-25*4x^{3} - 30y^{4}*2x + 0 + 0)}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}})\\=&\frac{75000x^{7}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{5}{2}}} + \frac{90000y^{4}x^{5}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{5}{2}}} + \frac{2500x^{3}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}} + \frac{27000y^{8}x^{3}}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{5}{2}}} + \frac{900y^{4}x}{(-25x^{4} - 30y^{4}x^{2} - 9y^{8} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!