本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(x + {(cos(x))}^{2})}^{5} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 5x^{4}cos^{2}(x) + 10x^{3}cos^{4}(x) + 10x^{2}cos^{6}(x) + 5xcos^{8}(x) + x^{5} + cos^{10}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 5x^{4}cos^{2}(x) + 10x^{3}cos^{4}(x) + 10x^{2}cos^{6}(x) + 5xcos^{8}(x) + x^{5} + cos^{10}(x)\right)}{dx}\\=&5*4x^{3}cos^{2}(x) + 5x^{4}*-2cos(x)sin(x) + 10*3x^{2}cos^{4}(x) + 10x^{3}*-4cos^{3}(x)sin(x) + 10*2xcos^{6}(x) + 10x^{2}*-6cos^{5}(x)sin(x) + 5cos^{8}(x) + 5x*-8cos^{7}(x)sin(x) + 5x^{4} + -10cos^{9}(x)sin(x)\\=&20x^{3}cos^{2}(x) - 10x^{4}sin(x)cos(x) + 30x^{2}cos^{4}(x) - 40x^{3}sin(x)cos^{3}(x) + 20xcos^{6}(x) - 60x^{2}sin(x)cos^{5}(x) + 5cos^{8}(x) - 40xsin(x)cos^{7}(x) + 5x^{4} - 10sin(x)cos^{9}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!