本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x{ln(1 + {x}^{2})}^{2} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xln^{2}(x^{2} + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xln^{2}(x^{2} + 1)\right)}{dx}\\=&ln^{2}(x^{2} + 1) + \frac{x*2ln(x^{2} + 1)(2x + 0)}{(x^{2} + 1)}\\=&ln^{2}(x^{2} + 1) + \frac{4x^{2}ln(x^{2} + 1)}{(x^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( ln^{2}(x^{2} + 1) + \frac{4x^{2}ln(x^{2} + 1)}{(x^{2} + 1)}\right)}{dx}\\=&\frac{2ln(x^{2} + 1)(2x + 0)}{(x^{2} + 1)} + 4(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{2}ln(x^{2} + 1) + \frac{4*2xln(x^{2} + 1)}{(x^{2} + 1)} + \frac{4x^{2}(2x + 0)}{(x^{2} + 1)(x^{2} + 1)}\\=&\frac{12xln(x^{2} + 1)}{(x^{2} + 1)} - \frac{8x^{3}ln(x^{2} + 1)}{(x^{2} + 1)^{2}} + \frac{8x^{3}}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!