本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{2}^{\frac{({(x - 2)}^{5})}{({(x + 3)}^{2})}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = log_{2}^{\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{2}^{\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}}}\right)}{dx}\\=&(\frac{(\frac{((\frac{-2(1 + 0)}{(x + 3)^{3}})x^{5} + \frac{5x^{4}}{(x + 3)^{2}} - 10(\frac{-2(1 + 0)}{(x + 3)^{3}})x^{4} - \frac{10*4x^{3}}{(x + 3)^{2}} + 40(\frac{-2(1 + 0)}{(x + 3)^{3}})x^{3} + \frac{40*3x^{2}}{(x + 3)^{2}} - 80(\frac{-2(1 + 0)}{(x + 3)^{3}})x^{2} - \frac{80*2x}{(x + 3)^{2}} + 80(\frac{-2(1 + 0)}{(x + 3)^{3}})x + \frac{80}{(x + 3)^{2}} - 32(\frac{-2(1 + 0)}{(x + 3)^{3}}))}{(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})} - \frac{(0)log_{2}^{\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}}}}{(2)})}{(ln(2))})\\=&\frac{-2x^{5}}{(x + 3)^{3}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} + \frac{5x^{4}}{(x + 3)^{2}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} + \frac{20x^{4}}{(x + 3)^{3}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} - \frac{40x^{3}}{(x + 3)^{2}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} - \frac{80x^{3}}{(x + 3)^{3}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} + \frac{120x^{2}}{(x + 3)^{2}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} + \frac{160x^{2}}{(x + 3)^{3}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} - \frac{160x}{(x + 3)^{2}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} - \frac{160x}{(x + 3)^{3}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} + \frac{80}{(x + 3)^{2}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)} + \frac{64}{(x + 3)^{3}(\frac{x^{5}}{(x + 3)^{2}} - \frac{10x^{4}}{(x + 3)^{2}} + \frac{40x^{3}}{(x + 3)^{2}} - \frac{80x^{2}}{(x + 3)^{2}} + \frac{80x}{(x + 3)^{2}} - \frac{32}{(x + 3)^{2}})ln(2)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!