本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{log_{2}^{{(x - 2)}^{5}}}{({(x + 3)}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{log_{2}^{x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32}}{(x + 3)^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{log_{2}^{x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32}}{(x + 3)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + 3)^{3}})log_{2}^{x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32} + \frac{(\frac{(\frac{(5x^{4} - 10*4x^{3} + 40*3x^{2} - 80*2x + 80 + 0)}{(x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32)} - \frac{(0)log_{2}^{x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32}}{(2)})}{(ln(2))})}{(x + 3)^{2}}\\=&\frac{-2log_{2}^{x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32}}{(x + 3)^{3}} + \frac{5x^{4}}{(x + 3)^{2}(x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32)ln(2)} - \frac{40x^{3}}{(x + 3)^{2}(x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32)ln(2)} + \frac{120x^{2}}{(x + 3)^{2}(x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32)ln(2)} - \frac{160x}{(x + 3)^{2}(x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32)ln(2)} + \frac{80}{(x + 3)^{2}(x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32)ln(2)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!