本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{1}{(cos(x)(sin(x) - ccos(x)))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{1}{(sin(x)cos(x) - ccos^{2}(x))})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{1}{(sin(x)cos(x) - ccos^{2}(x))})\right)}{dx}\\=&\frac{(\frac{-(cos(x)cos(x) + sin(x)*-sin(x) - c*-2cos(x)sin(x))}{(sin(x)cos(x) - ccos^{2}(x))^{2}})*\frac{1}{2}}{(\frac{1}{(sin(x)cos(x) - ccos^{2}(x))})^{\frac{1}{2}}}\\=&\frac{-cos^{2}(x)}{2(sin(x)cos(x) - ccos^{2}(x))^{\frac{3}{2}}} + \frac{sin^{2}(x)}{2(sin(x)cos(x) - ccos^{2}(x))^{\frac{3}{2}}} - \frac{csin(x)cos(x)}{(sin(x)cos(x) - ccos^{2}(x))^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!