本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(sin(x))}^{4} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin^{4}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin^{4}(x)\right)}{dx}\\=&4sin^{3}(x)cos(x)\\=&4sin^{3}(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 4sin^{3}(x)cos(x)\right)}{dx}\\=&4*3sin^{2}(x)cos(x)cos(x) + 4sin^{3}(x)*-sin(x)\\=&12sin^{2}(x)cos^{2}(x) - 4sin^{4}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 12sin^{2}(x)cos^{2}(x) - 4sin^{4}(x)\right)}{dx}\\=&12*2sin(x)cos(x)cos^{2}(x) + 12sin^{2}(x)*-2cos(x)sin(x) - 4*4sin^{3}(x)cos(x)\\=&24sin(x)cos^{3}(x) - 40sin^{3}(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 24sin(x)cos^{3}(x) - 40sin^{3}(x)cos(x)\right)}{dx}\\=&24cos(x)cos^{3}(x) + 24sin(x)*-3cos^{2}(x)sin(x) - 40*3sin^{2}(x)cos(x)cos(x) - 40sin^{3}(x)*-sin(x)\\=&24cos^{4}(x) - 192sin^{2}(x)cos^{2}(x) + 40sin^{4}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!