本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{((x + 1)({x}^{2} - 2))}{(3 - x)})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}((\frac{-(-1 + 0)}{(-x + 3)^{2}})x^{3} + \frac{3x^{2}}{(-x + 3)} - 2(\frac{-(-1 + 0)}{(-x + 3)^{2}})x - \frac{2}{(-x + 3)} + (\frac{-(-1 + 0)}{(-x + 3)^{2}})x^{2} + \frac{2x}{(-x + 3)} - 2(\frac{-(-1 + 0)}{(-x + 3)^{2}}))}{(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}})\\=&\frac{x^{3}}{2(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)^{2}} + \frac{3x^{2}}{2(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)} - \frac{x}{(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)^{2}} + \frac{x^{2}}{2(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)^{2}} + \frac{x}{(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)} - \frac{1}{(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)^{2}} - \frac{1}{(\frac{x^{3}}{(-x + 3)} - \frac{2x}{(-x + 3)} + \frac{x^{2}}{(-x + 3)} - \frac{2}{(-x + 3)})^{\frac{1}{2}}(-x + 3)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!