本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(sec(x) - 1)}{(sec(x) + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{sec(x)}{(sec(x) + 1)} - \frac{1}{(sec(x) + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{sec(x)}{(sec(x) + 1)} - \frac{1}{(sec(x) + 1)})\right)}{dx}\\=&\frac{((\frac{-(sec(x)tan(x) + 0)}{(sec(x) + 1)^{2}})sec(x) + \frac{sec(x)tan(x)}{(sec(x) + 1)} - (\frac{-(sec(x)tan(x) + 0)}{(sec(x) + 1)^{2}}))}{(\frac{sec(x)}{(sec(x) + 1)} - \frac{1}{(sec(x) + 1)})}\\=&\frac{-tan(x)sec^{2}(x)}{(\frac{sec(x)}{(sec(x) + 1)} - \frac{1}{(sec(x) + 1)})(sec(x) + 1)^{2}} + \frac{tan(x)sec(x)}{(sec(x) + 1)(\frac{sec(x)}{(sec(x) + 1)} - \frac{1}{(sec(x) + 1)})} + \frac{tan(x)sec(x)}{(\frac{sec(x)}{(sec(x) + 1)} - \frac{1}{(sec(x) + 1)})(sec(x) + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!