Y | = | 1 | + | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | + | ( | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | − | 1 | × | 1 100 | ) | ( | 7 100 | + | 3 100 | + | 2 100 | ) |
方程两边同时乘以: | ( | 1 | + | 13 100 | ) |
Y | ( | 1 | + | 13 100 | ) | = | 1 | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | + | ( | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | − | 1 | × | 1 100 | ) | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
Y | × | 1 | + | Y | × | 13 100 | = | 1 | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | + | ( | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | − | 1 | × | 1 100 | ) | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
Y | × | 1 | + | Y | × | 13 100 | = | 1 | × | 1 | + | 1 | × | 13 100 | + | Y | × | 13 100 | + | ( | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | − | 1 | × | 1 100 | ) | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
Y | × | 1 | + | Y | × | 13 100 | = | 1 | + | 13 100 | + | Y | × | 13 100 | + | ( | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | − | 1 | × | 1 100 | ) | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
113 100 | Y | = | 113 100 | + | 13 100 | Y | + | ( | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | − | 1 | × | 1 100 | ) | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
113 100 | Y | = | 113 100 | + | 13 100 | Y | + | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 | × | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
113 100 | Y | = | 113 100 | + | 13 100 | Y | + | Y | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
方程两边同时乘以: | ( | 1 | + | 13 100 | ) |
113 100 | Y | ( | 1 | + | 13 100 | ) | = | 113 100 | ( | 1 | + | 13 100 | ) | + | 13 100 | Y | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
113 100 | Y | × | 1 | + | 113 100 | Y | × | 13 100 | = | 113 100 | ( | 1 | + | 13 100 | ) | + | 13 100 | Y | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
113 100 | Y | × | 1 | + | 113 100 | Y | × | 13 100 | = | 113 100 | × | 1 | + | 113 100 | × | 13 100 | + | 13 100 | Y | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 |
113 100 | Y | + | 1469 10000 | Y | = | 113 100 | + | 1469 10000 | + | 13 100 | Y | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 13 100 | Y | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 13 100 | Y | × | 1 | + | 13 100 | Y | × | 13 100 | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 |
12769 10000 | Y | = | 12769 10000 | + | 13 100 | Y | + | 169 10000 | Y | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 1469 10000 | Y | + | Y | × | 13 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 1469 10000 | Y | + | Y | × | 13 100 | × | 7 100 | ( | 1 | + | 13 100 | ) | + | Y | × | 13 100 | × | 3 100 | ( | 1 | + | 13 100 | ) | + | Y |
12769 10000 | Y | = | 12769 10000 | + | 1469 10000 | Y | + | Y | × | 91 10000 | ( | 1 | + | 13 100 | ) | + | Y | × | 39 10000 | ( | 1 | + | 13 100 | ) | + | Y | × | 13 5000 | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 1469 10000 | Y | + | Y | × | 91 10000 | × | 1 | + | Y | × | 91 10000 | × | 13 100 | + | Y | × | 39 10000 | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 1469 10000 | Y | + | Y | × | 91 10000 | + | Y | × | 1183 1000000 | + | Y | × | 39 10000 | ( | 1 | + | 13 100 | ) | + | Y | × | 13 5000 |
12769 10000 | Y | = | 12769 10000 | + | 157183 1000000 | Y | + | Y | × | 39 10000 | ( | 1 | + | 13 100 | ) | + | Y | × | 13 5000 | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 157183 1000000 | Y | + | Y | × | 39 10000 | × | 1 | + | Y | × | 39 10000 | × | 13 100 | + | Y | × | 13 5000 | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 157183 1000000 | Y | + | Y | × | 39 10000 | + | Y | × | 507 1000000 | + | Y | × | 13 5000 | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 16159 100000 | Y | + | Y | × | 13 5000 | ( | 1 | + | 13 100 | ) | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) |
12769 10000 | Y | = | 12769 10000 | + | 16159 100000 | Y | + | Y | × | 13 5000 | × | 1 | + | Y | × | 13 5000 | × | 13 100 | − | 1 100 | ( | 7 100 | + | 3 100 | + | 2 100 | ) | ( | 1 | + | 13 100 | ) |