总述:本次共解1题。其中
☆方程1题
〖 1/1方程〗
作业:求方程 x(x+50)(x+250) = (x+50)(x+5)(x+250)+x(x+250)(x+50)+x(x+50)(x+50) 的解.
题型:方程
解:原方程: | x | ( | x | + | 50 | ) | ( | x | + | 250 | ) | = | ( | x | + | 50 | ) | ( | x | + | 5 | ) | ( | x | + | 250 | ) | + | x | ( | x | + | 250 | ) | ( | x | + | 50 | ) | + | x | ( | x | + | 50 | ) | ( | x | + | 50 | ) |
去掉方程左边的括号:
方程左边 = | x | x | ( | x | + | 250 | ) | + | x | × | 50 | ( | x | + | 250 | ) |
= | x | x | x | + | x | x | × | 250 | + | x | × | 50 | ( | x | + | 250 | ) |
= | x | x | x | + | x | x | × | 250 | + | x | × | 50 | x | + | x | × | 50 | × | 250 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 50 | x | + | x | × | 12500 |
方程化为:
| x | x | x | + | x | x | × | 250 | + | x | × | 50 | x | + | 12500 | x | = | ( | x | + | 50 | ) | ( | x | + | 5 | ) | ( | x | + | 250 | ) | + | x | ( | x | + | 250 | ) | ( | x | + | 50 | ) | + | x | ( | x | + | 50 | ) | ( | x | + | 50 | ) |
去掉方程右边的括号:
方程右边 = | x | ( | x | + | 5 | ) | ( | x | + | 250 | ) | + | 50 | ( | x | + | 5 | ) | ( | x | + | 250 | ) | + | x | ( | x | + | 250 | ) | ( | x | + | 50 | ) | + | x | ( | x | + | 50 | ) | ( | x | + | 50 | ) |
= | x | x | ( | x | + | 250 | ) | + | x | × | 5 | ( | x | + | 250 | ) | + | 50 | ( | x | + | 5 | ) | ( | x | + | 250 | ) | + | x | ( | x | + | 250 | ) | ( | x | + | 50 | ) |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | ( | x | + | 250 | ) | + | 50 | ( | x | + | 5 | ) | ( | x | + | 250 | ) |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | x | × | 5 | × | 250 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | x | × | 1250 | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 1250 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 1250 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 1250 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 1250 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 13750 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 13750 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 13750 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 14000 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 14000 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 14000 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 14000 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 14000 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 26500 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 26500 | x | + | 50 |
= | x | x | x | + | x | x | × | 250 | + | x | × | 5 | x | + | 26500 | x | + | 50 |
方程化为一般式后,有公因式:
( x + 50 )
由
x + 50 = 0
得:
x1=-50
不能由因式分解法得出的解:
x2≈-148.285148 ,保留6位小数
x3≈-4.214852 ,保留6位小数
有 3个解。
解程的详细方法请参阅:《方程的解法》
你的问题在这里没有得到解决?请到 热门难题 里面看看吧!