1 | ÷ | x | × | ( | x | + | 1 | ) | + | 1 | ÷ | ( | x | + | 1 | ) | × | ( | x | + | 2 | ) | + | 1 | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 3 | ) | = | 1 | ÷ | x | + | 3 |
方程两边同时乘以: | x |
1 | ( | x | + | 1 | ) | + | 1 | ÷ | ( | x | + | 1 | ) | × | ( | x | + | 2 | ) | x | + | 1 | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 3 | ) | x | = | 1 | ÷ | 1 | × | 1 | + | 3 | x |
1 | x | + | 1 | × | 1 | + | 1 | ÷ | ( | x | + | 1 | ) | × | ( | x | + | 2 | ) | x | + | 1 | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 3 | ) | x | = | 1 | ÷ | 1 | × | 1 | + | 3 | x |
1 | x | + | 1 | + | 1 | ÷ | ( | x | + | 1 | ) | × | ( | x | + | 2 | ) | x | + | 1 | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 3 | ) | x | = | 1 | + | 3 | x |
方程两边同时乘以: | ( | x | + | 1 | ) |
1 | x | ( | x | + | 1 | ) | + | 1 | ( | x | + | 1 | ) | + | 1 | ( | x | + | 2 | ) | x | + | 1 | ÷ | ( | x | + | 2 | ) | × | ( | x | + | 3 | ) | x | = | 1 | ( | x | + | 1 | ) | + | 3 | x | ( | x | + | 1 | ) |
1 | x | x | + | 1 | x | × | 1 | + | 1 | ( | x | + | 1 | ) | + | 1 | ( | x | + | 2 | ) | x | + | 1 | = | 1 | ( | x | + | 1 | ) | + | 3 | x | ( | x | + | 1 | ) |
1 | x | x | + | 1 | x | × | 1 | + | 1 | ( | x | + | 1 | ) | + | 1 | ( | x | + | 2 | ) | x | + | 1 | = | 1 | x | + | 1 | × | 1 | + | 3 | x | ( | x | + | 1 | ) |
1 | x | x | + | 1 | x | + | 1 | ( | x | + | 1 | ) | + | 1 | ( | x | + | 2 | ) | x | + | 1 | ÷ | ( | x | + | 2 | ) | = | 1 | x | + | 1 | + | 3 | x | ( | x | + | 1 | ) |
方程两边同时乘以: | ( | x | + | 2 | ) |
1 | x | x | ( | x | + | 2 | ) | + | 1 | x | ( | x | + | 2 | ) | + | 1 | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | = | 1 | x | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 1 | x | x | × | 2 | + | 1 | x | ( | x | + | 2 | ) | + | 1 | = | 1 | x | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 1 | x | x | × | 2 | + | 1 | x | ( | x | + | 2 | ) | + | 1 | = | 1 | x | x | + | 1 | x | × | 2 | + | 1 | ( | x | + | 2 | ) | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | ( | x | + | 2 | ) | + | 1 | ( | x | + | 1 | ) | = | 1 | x | x | + | 2 | x | + | 1 | ( | x | + | 2 | ) | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 1 | x | = | 1 | x | x | + | 2 | x | + | 1 | ( | x | + | 2 | ) | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 1 | x | = | 1 | x | x | + | 2 | x | + | 1 | x | + | 1 | × | 2 | + | 3 | x | ( | x | + | 1 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 2 | x | + | 1 | x | + | 2 | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | ( | x | + | 1 | ) | ( | x | + | 2 | ) |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | ( | x | + | 2 | ) | + | 3 | x |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | ( | x | + | 2 | ) | + | 3 | x |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | ( | x | + | 2 | ) | + | 3 | x |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | x | + | 3 | x |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 2 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | x | + | 6 | x |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 4 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | x | + | 6 | x |
1 | x | x | x | + | 2 | x | x | + | 1 | x | x | + | 4 | x | = | 1 | x | x | + | 3 | x | + | 2 | + | 3 | x | x | x | + | 6 | x |
x1= | - | 3 2 |