| 0 | = | - | 4003 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | ) | ) | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | ) | ) |
| 0 | = | - | 4003 100 | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | ) | ) |
| 0 | = | - | 4003 100 | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | × | 1 | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | × | ( | x | ÷ | 12 | ) |
| 0 | = | - | 4003 100 | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | × | ( | x | ÷ | 12 | ) |
| 方程两边同时乘以: | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | × | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | + | 4273 100 | + | 4273 100 | ÷ | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | × | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 方程两边同时乘以: | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | × | 1 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | × | 1 | − | 4003 100 | ( | x | ÷ | 2 | ) | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | ( | x | ÷ | 2 | ) | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | x | ÷ | 2 | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 200 | x | − | 4003 100 | ( | x | ÷ | 2 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 200 | x | − | 4003 100 | x | ÷ | 2 | × | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 200 | x | − | 4003 200 | x | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 200 | x | − | 4003 200 | x | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 200 | x | − | 4003 200 | x | × | 1 | − | 4003 200 | x | ( | x | ÷ | 2 | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 |
| 0 | = | - | 4003 100 | − | 4003 200 | x | − | 4003 200 | x | − | 4003 200 | x | ( | x | ÷ | 2 | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | x | − | 4003 200 | x | ( | x | ÷ | 2 | ) | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | x | − | 4003 200 | x | x | ÷ | 2 | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | x | − | 4003 400 | x | x | + | 4273 100 | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | x | − | 4003 400 | x | x | + | 4273 100 | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | + | 4273 100 | ( | x | ÷ | 12 | ) | ( | ( | 1 | + | ( | x | ÷ | 2 | ) | ) | ) |
| 0 | = | - | 4003 100 | − | 4003 100 | x | − | 4003 400 | x | x | + | 4273 100 | × | 1 | + | 4273 100 | ( | x | ÷ | 2 | ) | + | 4273 100 | ( | x | ÷ | 12 | ) |