总述:本次共解1题。其中
☆方程1题
〖 1/1方程〗
作业:求方程 12359*(1+x)(1+x)(1+x)(1+x)(1+x)(1+x)(1+x)(1+x)(1+x) = 37114 的解.
题型:方程
解:原方程:| | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | = | 37114 |
去掉方程左边的括号:
| 方程左边 = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x |
| = | 12359 | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) |
| = | 12359 | × | 1 | + | 12359 | x | + | 12359 | x | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 |
| = | 12359 | + | 12359 | x | + | 12359 | x | ( | 1 | + | x | ) | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x |
| = | 12359 | + | 12359 | x | + | 12359 | x | × | 1 | + | 12359 | x | x | + | 12359 | x | ( | 1 | + | x | ) |
| = | 12359 | + | 12359 | x | + | 12359 | x | + | 12359 | x | x | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) |
| = | 12359 | + | 24718 | x | + | 12359 | x | x | + | 12359 | x | ( | 1 | + | x | ) | ( | 1 | + | x | ) | + | 12359 | x |
| = | 12359 | + | 24718 | x | + | 12359 | x | x | + | 12359 | x | × | 1 | ( | 1 | + | x | ) | + | 12359 | x |
| = | 12359 | + | 24718 | x | + | 12359 | x | x | + | 12359 | x | ( | 1 | + | x | ) | + | 12359 | x | x |
| = | 12359 | + | 24718 | x | + | 12359 | x | x | + | 12359 | x | × | 1 | + | 12359 | x | x |
| = | 12359 | + | 24718 | x | + | 12359 | x | x | + | 12359 | x | + | 12359 | x | x | + | 12359 |
x≈0.129956 ,保留6位小数
有 1个解。
解一元一次方程的详细方法请参阅:《一元一次方程的解法》
你的问题在这里没有得到解决?请到 热门难题 里面看看吧!