There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(x - {({x}^{2} - 8)}^{\frac{1}{2}})}{(x + {({x}^{2} - 8)}^{\frac{1}{2}})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})\right)}{dx}\\=&\frac{((\frac{-(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} - 8)^{\frac{1}{2}}}))}{(x + (x^{2} - 8)^{\frac{1}{2}})^{2}})x + \frac{1}{(x + (x^{2} - 8)^{\frac{1}{2}})} - (\frac{-(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} - 8)^{\frac{1}{2}}}))}{(x + (x^{2} - 8)^{\frac{1}{2}})^{2}})(x^{2} - 8)^{\frac{1}{2}} - \frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} - 8)^{\frac{1}{2}}})}{(x + (x^{2} - 8)^{\frac{1}{2}})})}{(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})}\\=& - \frac{x^{2}}{(x + (x^{2} - 8)^{\frac{1}{2}})^{2}(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})(x^{2} - 8)^{\frac{1}{2}}} - \frac{x}{(x^{2} - 8)^{\frac{1}{2}}(x + (x^{2} - 8)^{\frac{1}{2}})(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})} + \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})^{2}(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})} + \frac{1}{(\frac{x}{(x + (x^{2} - 8)^{\frac{1}{2}})} - \frac{(x^{2} - 8)^{\frac{1}{2}}}{(x + (x^{2} - 8)^{\frac{1}{2}})})(x + (x^{2} - 8)^{\frac{1}{2}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!