There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{(ae^{x}sin(2x)axe^{x}sin(2x)axe^{x}cos(2x))}{(be^{x}cos(2x)bxe^{x}cos(2x)bxe^{x}sin(2x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a^{3}sin(2x)}{b^{3}cos(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a^{3}sin(2x)}{b^{3}cos(2x)}\right)}{dx}\\=&\frac{a^{3}cos(2x)*2}{b^{3}cos(2x)} + \frac{a^{3}sin(2x)sin(2x)*2}{b^{3}cos^{2}(2x)}\\=&\frac{2a^{3}sin^{2}(2x)}{b^{3}cos^{2}(2x)} + \frac{2a^{3}}{b^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2a^{3}sin^{2}(2x)}{b^{3}cos^{2}(2x)} + \frac{2a^{3}}{b^{3}}\right)}{dx}\\=&\frac{2a^{3}*2sin(2x)cos(2x)*2}{b^{3}cos^{2}(2x)} + \frac{2a^{3}sin^{2}(2x)*2sin(2x)*2}{b^{3}cos^{3}(2x)} + 0\\=&\frac{8a^{3}sin(2x)}{b^{3}cos(2x)} + \frac{8a^{3}sin^{3}(2x)}{b^{3}cos^{3}(2x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{8a^{3}sin(2x)}{b^{3}cos(2x)} + \frac{8a^{3}sin^{3}(2x)}{b^{3}cos^{3}(2x)}\right)}{dx}\\=&\frac{8a^{3}cos(2x)*2}{b^{3}cos(2x)} + \frac{8a^{3}sin(2x)sin(2x)*2}{b^{3}cos^{2}(2x)} + \frac{8a^{3}*3sin^{2}(2x)cos(2x)*2}{b^{3}cos^{3}(2x)} + \frac{8a^{3}sin^{3}(2x)*3sin(2x)*2}{b^{3}cos^{4}(2x)}\\=&\frac{64a^{3}sin^{2}(2x)}{b^{3}cos^{2}(2x)} + \frac{48a^{3}sin^{4}(2x)}{b^{3}cos^{4}(2x)} + \frac{16a^{3}}{b^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{64a^{3}sin^{2}(2x)}{b^{3}cos^{2}(2x)} + \frac{48a^{3}sin^{4}(2x)}{b^{3}cos^{4}(2x)} + \frac{16a^{3}}{b^{3}}\right)}{dx}\\=&\frac{64a^{3}*2sin(2x)cos(2x)*2}{b^{3}cos^{2}(2x)} + \frac{64a^{3}sin^{2}(2x)*2sin(2x)*2}{b^{3}cos^{3}(2x)} + \frac{48a^{3}*4sin^{3}(2x)cos(2x)*2}{b^{3}cos^{4}(2x)} + \frac{48a^{3}sin^{4}(2x)*4sin(2x)*2}{b^{3}cos^{5}(2x)} + 0\\=&\frac{256a^{3}sin(2x)}{b^{3}cos(2x)} + \frac{640a^{3}sin^{3}(2x)}{b^{3}cos^{3}(2x)} + \frac{384a^{3}sin^{5}(2x)}{b^{3}cos^{5}(2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!