There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ae^{x}cos(2x) + axe^{x}cos(2x) - 2axe^{x}sin(2x) + be^{x}sin(2x) + bxe^{x}sin(2x) + 2bxe^{x}cos(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ae^{x}cos(2x) + axe^{x}cos(2x) - 2axe^{x}sin(2x) + be^{x}sin(2x) + bxe^{x}sin(2x) + 2bxe^{x}cos(2x)\right)}{dx}\\=&ae^{x}cos(2x) + ae^{x}*-sin(2x)*2 + ae^{x}cos(2x) + axe^{x}cos(2x) + axe^{x}*-sin(2x)*2 - 2ae^{x}sin(2x) - 2axe^{x}sin(2x) - 2axe^{x}cos(2x)*2 + be^{x}sin(2x) + be^{x}cos(2x)*2 + be^{x}sin(2x) + bxe^{x}sin(2x) + bxe^{x}cos(2x)*2 + 2be^{x}cos(2x) + 2bxe^{x}cos(2x) + 2bxe^{x}*-sin(2x)*2\\=&2ae^{x}cos(2x) - 4ae^{x}sin(2x) - 3axe^{x}cos(2x) - 4axe^{x}sin(2x) + 2be^{x}sin(2x) + 4be^{x}cos(2x) - 3bxe^{x}sin(2x) + 4bxe^{x}cos(2x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!