There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln({(1 + {e}^{2}x)}^{\frac{1}{2}} + {e}^{x})}{2} + (\frac{1}{2})({e}^{x}){(1 + {e}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x}) + \frac{1}{2}(e^{2} + 1)^{\frac{1}{2}}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x}) + \frac{1}{2}(e^{2} + 1)^{\frac{1}{2}}{e}^{x}\right)}{dx}\\=&\frac{\frac{1}{2}((\frac{\frac{1}{2}(e^{2} + x*2e*0 + 0)}{(xe^{2} + 1)^{\frac{1}{2}}}) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x})} + \frac{1}{2}(\frac{\frac{1}{2}(2e*0 + 0)}{(e^{2} + 1)^{\frac{1}{2}}}){e}^{x} + \frac{1}{2}(e^{2} + 1)^{\frac{1}{2}}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&\frac{e^{2}}{4(xe^{2} + 1)^{\frac{1}{2}}((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x})} + \frac{{e}^{x}}{2((xe^{2} + 1)^{\frac{1}{2}} + {e}^{x})} + \frac{(e^{2} + 1)^{\frac{1}{2}}{e}^{x}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!