There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{4{e}^{(\frac{5x}{4})}(12sin(3x) + 5cos(3x))}{169} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{48}{169}{e}^{(\frac{5}{4}x)}sin(3x) + \frac{20}{169}{e}^{(\frac{5}{4}x)}cos(3x) + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{48}{169}{e}^{(\frac{5}{4}x)}sin(3x) + \frac{20}{169}{e}^{(\frac{5}{4}x)}cos(3x) + C\right)}{dx}\\=&\frac{48}{169}({e}^{(\frac{5}{4}x)}((\frac{5}{4})ln(e) + \frac{(\frac{5}{4}x)(0)}{(e)}))sin(3x) + \frac{48}{169}{e}^{(\frac{5}{4}x)}cos(3x)*3 + \frac{20}{169}({e}^{(\frac{5}{4}x)}((\frac{5}{4})ln(e) + \frac{(\frac{5}{4}x)(0)}{(e)}))cos(3x) + \frac{20}{169}{e}^{(\frac{5}{4}x)}*-sin(3x)*3 + 0\\=&{e}^{(\frac{5}{4}x)}cos(3x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ \frac{4{e}^{(\frac{5x}{4})}(5sin(3x) - 12cos(3x))}{169} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{20}{169}{e}^{(\frac{5}{4}x)}sin(3x) - \frac{48}{169}{e}^{(\frac{5}{4}x)}cos(3x) + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{20}{169}{e}^{(\frac{5}{4}x)}sin(3x) - \frac{48}{169}{e}^{(\frac{5}{4}x)}cos(3x) + C\right)}{dx}\\=&\frac{20}{169}({e}^{(\frac{5}{4}x)}((\frac{5}{4})ln(e) + \frac{(\frac{5}{4}x)(0)}{(e)}))sin(3x) + \frac{20}{169}{e}^{(\frac{5}{4}x)}cos(3x)*3 - \frac{48}{169}({e}^{(\frac{5}{4}x)}((\frac{5}{4})ln(e) + \frac{(\frac{5}{4}x)(0)}{(e)}))cos(3x) - \frac{48}{169}{e}^{(\frac{5}{4}x)}*-sin(3x)*3 + 0\\=&{e}^{(\frac{5}{4}x)}sin(3x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!