There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{e^{x}(sin(x) + cos(x))}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}e^{x}sin(x) + \frac{1}{2}e^{x}cos(x)\right)}{dx}\\=&\frac{1}{2}e^{x}sin(x) + \frac{1}{2}e^{x}cos(x) + \frac{1}{2}e^{x}cos(x) + \frac{1}{2}e^{x}*-sin(x)\\=&e^{x}cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ \frac{e^{x}(sin(x) - cos(x))}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}e^{x}sin(x) - \frac{1}{2}e^{x}cos(x)\right)}{dx}\\=&\frac{1}{2}e^{x}sin(x) + \frac{1}{2}e^{x}cos(x) - \frac{1}{2}e^{x}cos(x) - \frac{1}{2}e^{x}*-sin(x)\\=&e^{x}sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!