There are 3 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ first\ derivative\ of\ function\ \frac{2}{(2x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{(2x + 1)}\right)}{dx}\\=&2(\frac{-(2 + 0)}{(2x + 1)^{2}})\\=&\frac{-4}{(2x + 1)^{2}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ first\ derivative\ of\ function\ \frac{1}{sqrt(x(x + 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sqrt(x^{2} + x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sqrt(x^{2} + x)}\right)}{dx}\\=&\frac{-(2x + 1)*\frac{1}{2}}{(x^{2} + x)(x^{2} + x)^{\frac{1}{2}}}\\=&\frac{-x}{(x^{2} + x)^{\frac{3}{2}}} - \frac{1}{2(x^{2} + x)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ first\ derivative\ of\ function\ ln(1 + \frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{1}{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{x} + 1)\right)}{dx}\\=&\frac{(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} + 1)}\\=&\frac{-1}{(\frac{1}{x} + 1)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!