There are 3 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ first\ derivative\ of\ function\ ln(x + sqrt({x}^{2} + 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x + sqrt(x^{2} + 1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + sqrt(x^{2} + 1))\right)}{dx}\\=&\frac{(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))}\\=&\frac{x}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(x + sqrt(x^{2} + 1))}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ first\ derivative\ of\ function\ {e}^{x}ln({e}^{x} + sqrt({e}^{(2x)} + 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}ln({e}^{x} + sqrt({e}^{(2x)} + 1))\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln({e}^{x} + sqrt({e}^{(2x)} + 1)) + \frac{{e}^{x}(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + \frac{(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)*\frac{1}{2}}{({e}^{(2x)} + 1)^{\frac{1}{2}}})}{({e}^{x} + sqrt({e}^{(2x)} + 1))}\\=&{e}^{x}ln({e}^{x} + sqrt({e}^{(2x)} + 1)) + \frac{{e}^{(2x)}}{({e}^{x} + sqrt({e}^{(2x)} + 1))} + \frac{{e}^{(3x)}}{({e}^{x} + sqrt({e}^{(2x)} + 1))({e}^{(2x)} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ first\ derivative\ of\ function\ \frac{ln(arctan(x) + sqrt({arctan(x)}^{2} + 1))}{({x}^{2} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(arctan(x) + sqrt(arctan^{2}(x) + 1))}{(x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(arctan(x) + sqrt(arctan^{2}(x) + 1))}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})ln(arctan(x) + sqrt(arctan^{2}(x) + 1)) + \frac{((\frac{(1)}{(1 + (x)^{2})}) + \frac{((\frac{2arctan(x)(1)}{(1 + (x)^{2})}) + 0)*\frac{1}{2}}{(arctan^{2}(x) + 1)^{\frac{1}{2}}})}{(x^{2} + 1)(arctan(x) + sqrt(arctan^{2}(x) + 1))}\\=&\frac{-2xln(arctan(x) + sqrt(arctan^{2}(x) + 1))}{(x^{2} + 1)^{2}} + \frac{arctan(x)}{(arctan(x) + sqrt(arctan^{2}(x) + 1))(x^{2} + 1)(x^{2} + 1)(arctan^{2}(x) + 1)^{\frac{1}{2}}} + \frac{1}{(x^{2} + 1)(arctan(x) + sqrt(arctan^{2}(x) + 1))(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!