There are 3 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ first\ derivative\ of\ function\ {sin(x)}^{2} + {cos(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin^{2}(x) + cos^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin^{2}(x) + cos^{2}(x)\right)}{dx}\\=&2sin(x)cos(x) + -2cos(x)sin(x)\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ first\ derivative\ of\ function\ {sec(x)}^{2} - {tan(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sec^{2}(x) - tan^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sec^{2}(x) - tan^{2}(x)\right)}{dx}\\=&2sec^{2}(x)tan(x) - 2tan(x)sec^{2}(x)(1)\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ first\ derivative\ of\ function\ {csc(x)}^{2} - {cot(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = csc^{2}(x) - cot^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( csc^{2}(x) - cot^{2}(x)\right)}{dx}\\=&-2csc^{2}(x)cot(x) - -2cot(x)csc^{2}(x)\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!