There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(1)}{(x)}) + (\frac{(1)}{(2sqrt(3) + 1 - {x}^{2} - {y}^{2})}) + (\frac{(1)}{({y}^{3})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{x} + \frac{1}{(2sqrt(3) - x^{2} - y^{2} + 1)} + \frac{1}{y^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{x} + \frac{1}{(2sqrt(3) - x^{2} - y^{2} + 1)} + \frac{1}{y^{3}}\right)}{dx}\\=&\frac{-1}{x^{2}} + (\frac{-(2*0*\frac{1}{2}*3^{\frac{1}{2}} - 2x + 0 + 0)}{(2sqrt(3) - x^{2} - y^{2} + 1)^{2}}) + 0\\=&\frac{-1}{x^{2}} - \frac{2x}{(2sqrt(3) - x^{2} - y^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!