There are 3 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ first\ derivative\ of\ function\ \frac{x}{X}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{X}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{X}\right)}{dx}\\=&\frac{1}{X}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ first\ derivative\ of\ function\ ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x)\right)}{dx}\\=&\frac{1}{(x)}\\=&\frac{1}{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ first\ derivative\ of\ function\ \frac{{n}^{x}}{ln(n)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{n}^{x}}{ln(n)}\right)}{dx}\\=&\frac{({n}^{x}((1)ln(n) + \frac{(x)(0)}{(n)}))}{ln(n)} + \frac{{n}^{x}*-0}{ln^{2}(n)(n)}\\=&{n}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!