There are 3 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ first\ derivative\ of\ function\ xarcsin(x) + {(1 - {x}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarcsin(x) + (-x^{2} + 1)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarcsin(x) + (-x^{2} + 1)^{\frac{1}{2}}\right)}{dx}\\=&arcsin(x) + x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + (\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})\\=&arcsin(x) + \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ first\ derivative\ of\ function\ xarccos(x) - {(1 - {x}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarccos(x) - (-x^{2} + 1)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarccos(x) - (-x^{2} + 1)^{\frac{1}{2}}\right)}{dx}\\=&arccos(x) + x(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) - (\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})\\=&arccos(x) - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ first\ derivative\ of\ function\ xarctan(x) - \frac{ln({x}^{2} + 1)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarctan(x) - \frac{1}{2}ln(x^{2} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarctan(x) - \frac{1}{2}ln(x^{2} + 1)\right)}{dx}\\=&arctan(x) + x(\frac{(1)}{(1 + (x)^{2})}) - \frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)}\\=&arctan(x) + \frac{x}{(x^{2} + 1)} - \frac{x}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!