There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{x}\right)}{dx}\\=&e^{x}\\=&e^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{x}\right)}{dx}\\=&e^{x}\\=&e^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( e^{x}\right)}{dx}\\=&e^{x}\\=&e^{x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( e^{x}\right)}{dx}\\=&e^{x}\\=&e^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ xe\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe\right)}{dx}\\=&e + x*0\\=&e\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!