There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1 - \frac{2}{(1 + {e}^{(a((b + \frac{cd}{(f - cdkx)} + dh + \frac{cd}{(u - cdk(1 - x))}) - D))})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2}{({e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)} + 1)} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2}{({e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)} + 1)} + 1\right)}{dx}\\=& - 2(\frac{-(({e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)}((0 + (\frac{-(0 - cdk)}{(f - cdkx)^{2}})acd + 0 + 0 + (\frac{-(0 + cdk + 0)}{(u + cdkx - cdk)^{2}})acd + 0 + 0)ln(e) + \frac{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)(0)}{(e)})) + 0)}{({e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)} + 1)^{2}}) + 0\\=&\frac{2ac^{2}d^{2}k{e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)}}{({e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)} + 1)^{2}(f - cdkx)^{2}} - \frac{2ac^{2}d^{2}k{e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)}}{({e}^{(ab + \frac{acd}{(f - cdkx)} + adh + \frac{acd}{(u + cdkx - cdk)} - aD)} + 1)^{2}(u + cdkx - cdk)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!