There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{(\frac{3}{4})}{({x}^{2} + 1)}^{\frac{1}{2}})}{({(3x + 2)}^{5}{({x}^{3} - 2)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(x^{2} + 1)^{\frac{1}{2}}x^{\frac{3}{4}}}{(3x + 2)^{5}(x^{3} - 2)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(x^{2} + 1)^{\frac{1}{2}}x^{\frac{3}{4}}}{(3x + 2)^{5}(x^{3} - 2)^{2}}\right)}{dx}\\=&\frac{(\frac{-5(3 + 0)}{(3x + 2)^{6}})(x^{2} + 1)^{\frac{1}{2}}x^{\frac{3}{4}}}{(x^{3} - 2)^{2}} + \frac{(\frac{-2(3x^{2} + 0)}{(x^{3} - 2)^{3}})(x^{2} + 1)^{\frac{1}{2}}x^{\frac{3}{4}}}{(3x + 2)^{5}} + \frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})x^{\frac{3}{4}}}{(3x + 2)^{5}(x^{3} - 2)^{2}} + \frac{(x^{2} + 1)^{\frac{1}{2}}*\frac{3}{4}}{(3x + 2)^{5}(x^{3} - 2)^{2}x^{\frac{1}{4}}}\\=&\frac{-15(x^{2} + 1)^{\frac{1}{2}}x^{\frac{3}{4}}}{(3x + 2)^{6}(x^{3} - 2)^{2}} - \frac{6(x^{2} + 1)^{\frac{1}{2}}x^{\frac{11}{4}}}{(3x + 2)^{5}(x^{3} - 2)^{3}} + \frac{x^{\frac{7}{4}}}{(x^{2} + 1)^{\frac{1}{2}}(x^{3} - 2)^{2}(3x + 2)^{5}} + \frac{3(x^{2} + 1)^{\frac{1}{2}}}{4(x^{3} - 2)^{2}(3x + 2)^{5}x^{\frac{1}{4}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!