There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(({a}^{2} + a){x}^{(2a)} + (-{a}^{2} - a){x}^{a})}{(({a}^{2} + 2a + 1){x}^{(2a)} + (-2a - 2){x}^{a} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a^{2}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} + \frac{a{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} - \frac{a^{2}{x}^{a}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} - \frac{a{x}^{a}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a^{2}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} + \frac{a{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} - \frac{a^{2}{x}^{a}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} - \frac{a{x}^{a}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)}\right)}{dx}\\=&(\frac{-(a^{2}({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + 2a({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + ({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) - 2a({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) - 2({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) + 0)}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}})a^{2}{x}^{(2a)} + \frac{a^{2}({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)}))}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} + (\frac{-(a^{2}({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + 2a({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + ({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) - 2a({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) - 2({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) + 0)}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}})a{x}^{(2a)} + \frac{a({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)}))}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} - (\frac{-(a^{2}({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + 2a({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + ({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) - 2a({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) - 2({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) + 0)}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}})a^{2}{x}^{a} - \frac{a^{2}({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)} - (\frac{-(a^{2}({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + 2a({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) + ({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)})) - 2a({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) - 2({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})) + 0)}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}})a{x}^{a} - \frac{a({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)}\\=&\frac{-2a^{5}{x}^{(4a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} - \frac{6a^{4}{x}^{(4a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} - \frac{6a^{3}{x}^{(4a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} + \frac{8a^{4}{x}^{(3a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} + \frac{10a^{3}{x}^{(3a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} + \frac{2a^{3}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)x} - \frac{2a^{2}{x}^{(4a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} + \frac{4a^{2}{x}^{(3a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} + \frac{2a^{2}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)x} + \frac{2a^{5}{x}^{(3a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} - \frac{2a^{4}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} - \frac{4a^{3}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} - \frac{a^{3}{x}^{a}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)x} - \frac{2a^{2}{x}^{(2a)}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)^{2}x} - \frac{a^{2}{x}^{a}}{(a^{2}{x}^{(2a)} + 2a{x}^{(2a)} + {x}^{(2a)} - 2a{x}^{a} - 2{x}^{a} + 1)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!