There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + {(\frac{x}{0.97})}^{2})}^{0.5}{\frac{1}{({(\frac{{x}^{2}}{200})}^{2} + {(\frac{x}{7.8})}^{2})}}^{0.5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(1.03092783505155x + 1)^{\frac{1}{2}}}{(0.005x + 0.128205128205128x)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(1.03092783505155x + 1)^{\frac{1}{2}}}{(0.005x + 0.128205128205128x)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{0.5(1.03092783505155 + 0)}{(1.03092783505155x + 1)^{\frac{1}{2}}})}{(0.005x + 0.128205128205128x)^{\frac{1}{2}}} + (1.03092783505155x + 1)^{\frac{1}{2}}(\frac{-0.5(0.005 + 0.128205128205128)}{(0.005x + 0.128205128205128x)^{\frac{3}{2}}})\\=&\frac{-0.0666025641026(1.03092783505155x + 1)^{\frac{1}{2}}}{(0.005x + 0.128205128205128x)^{\frac{3}{2}}} + \frac{0.515463917525773}{(1.03092783505155x + 1)^{\frac{1}{2}}(0.005x + 0.128205128205128x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!