There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(sqrt({x}^{2}{\frac{1}{a}}^{2} + 1) + \frac{x}{a}) - sqrt({a}^{2}{\frac{1}{x}}^{2} + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(sqrt(\frac{x^{2}}{a^{2}} + 1) + \frac{x}{a}) - sqrt(\frac{a^{2}}{x^{2}} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sqrt(\frac{x^{2}}{a^{2}} + 1) + \frac{x}{a}) - sqrt(\frac{a^{2}}{x^{2}} + 1)\right)}{dx}\\=&\frac{(\frac{(\frac{2x}{a^{2}} + 0)*\frac{1}{2}}{(\frac{x^{2}}{a^{2}} + 1)^{\frac{1}{2}}} + \frac{1}{a})}{(sqrt(\frac{x^{2}}{a^{2}} + 1) + \frac{x}{a})} - \frac{(\frac{a^{2}*-2}{x^{3}} + 0)*\frac{1}{2}}{(\frac{a^{2}}{x^{2}} + 1)^{\frac{1}{2}}}\\=&\frac{x}{(sqrt(\frac{x^{2}}{a^{2}} + 1) + \frac{x}{a})(\frac{x^{2}}{a^{2}} + 1)^{\frac{1}{2}}a^{2}} + \frac{a^{2}}{(\frac{a^{2}}{x^{2}} + 1)^{\frac{1}{2}}x^{3}} + \frac{1}{(sqrt(\frac{x^{2}}{a^{2}} + 1) + \frac{x}{a})a}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!