There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} + \frac{16}{3})}^{\frac{1}{2}} + {({x}^{2} - 2x({3}^{\frac{1}{2}}) + 4)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} + \frac{16}{3})^{\frac{1}{2}} + (-2*3^{\frac{1}{2}}x + x^{2} + 4)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} + \frac{16}{3})^{\frac{1}{2}} + (-2*3^{\frac{1}{2}}x + x^{2} + 4)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + \frac{16}{3})^{\frac{1}{2}}}) + (\frac{\frac{1}{2}(-2*3^{\frac{1}{2}} + 2x + 0)}{(-2*3^{\frac{1}{2}}x + x^{2} + 4)^{\frac{1}{2}}})\\=&\frac{x}{(x^{2} + \frac{16}{3})^{\frac{1}{2}}} + \frac{x}{(-2*3^{\frac{1}{2}}x + x^{2} + 4)^{\frac{1}{2}}} - \frac{3^{\frac{1}{2}}}{(-2*3^{\frac{1}{2}}x + x^{2} + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!