There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ {x}^{x} + xln(x) - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x} + xln(x) - 1\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + ln(x) + \frac{x}{(x)} + 0\\=&{x}^{x}ln(x) + {x}^{x} + ln(x) + 1\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ {x}^{2}ln(x) - xln(x) + ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}ln(x) - xln(x) + ax\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}ln(x) - xln(x) + ax\right)}{dx}\\=&2xln(x) + \frac{x^{2}}{(x)} - ln(x) - \frac{x}{(x)} + a\\=&2xln(x) + x - ln(x) + a - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!