There are 6 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/6]Find\ the\ first\ derivative\ of\ function\ xe^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{x}\right)}{dx}\\=&e^{x} + xe^{x}\\=&e^{x} + xe^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/6]Find\ the\ first\ derivative\ of\ function\ \frac{x}{e^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{e^{x}}\right)}{dx}\\=&\frac{1}{e^{x}} + \frac{x*-e^{x}}{e^{{x}*{2}}}\\=&\frac{1}{e^{x}} - \frac{x}{e^{x}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/6]Find\ the\ first\ derivative\ of\ function\ \frac{e^{x}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{x}\right)}{dx}\\=&\frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\=&\frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/6]Find\ the\ first\ derivative\ of\ function\ xln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x)\right)}{dx}\\=&ln(x) + \frac{x}{(x)}\\=&ln(x) + 1\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[5/6]Find\ the\ first\ derivative\ of\ function\ \frac{ln(x)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{x}\right)}{dx}\\=&\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)}\\=&\frac{-ln(x)}{x^{2}} + \frac{1}{x^{2}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[6/6]Find\ the\ first\ derivative\ of\ function\ \frac{x}{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{ln(x)}\right)}{dx}\\=&\frac{1}{ln(x)} + \frac{x*-1}{ln^{2}(x)(x)}\\=&\frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!