There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{cos(27xx + 27tt + 8pi - 24)}(\frac{xx}{2} + \frac{1}{2})(\frac{tt}{2} + \frac{1}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}t^{2}x^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}x^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}t^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}t^{2}x^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}x^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}t^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}\right)}{dx}\\=&\frac{1}{4}t^{2}*2xe^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}t^{2}x^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}*-sin(27x^{2} + 27t^{2} + 8pi - 24)(27*2x + 0 + 0 + 0) + \frac{1}{4}*2xe^{cos(27x^{2} + 27t^{2} + 8pi - 24)} + \frac{1}{4}x^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}*-sin(27x^{2} + 27t^{2} + 8pi - 24)(27*2x + 0 + 0 + 0) + \frac{1}{4}t^{2}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}*-sin(27x^{2} + 27t^{2} + 8pi - 24)(27*2x + 0 + 0 + 0) + \frac{1}{4}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}*-sin(27x^{2} + 27t^{2} + 8pi - 24)(27*2x + 0 + 0 + 0)\\=&\frac{-27t^{2}x^{3}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}sin(27x^{2} + 27t^{2} + 8pi - 24)}{2} - \frac{27t^{2}xe^{cos(27x^{2} + 27t^{2} + 8pi - 24)}sin(27x^{2} + 27t^{2} + 8pi - 24)}{2} - \frac{27x^{3}e^{cos(27x^{2} + 27t^{2} + 8pi - 24)}sin(27x^{2} + 27t^{2} + 8pi - 24)}{2} - \frac{27xe^{cos(27x^{2} + 27t^{2} + 8pi - 24)}sin(27x^{2} + 27t^{2} + 8pi - 24)}{2} + \frac{t^{2}xe^{cos(27x^{2} + 27t^{2} + 8pi - 24)}}{2} + \frac{xe^{cos(27x^{2} + 27t^{2} + 8pi - 24)}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!